Momentum transfer across shear flows in Smoothed Particle Hydrodynamic simulations of galaxy formation

نویسندگان

  • T. Okamoto
  • A. Jenkins
  • V. R. Eke
  • V. Quilis
  • C. S. Frenk
چکیده

We investigate the evolution of angular momentum in Smoothed Particle Hydrodynamic (SPH) simulations of galaxy formation, paying particular attention to artificial numerical effects. We find that a cold gas disc forming in an ambient hot gas halo receives a strong hydrodynamic torque from the hot gas. By splitting the hydrodynamic force into artificial viscosity and pressure gradients, we find that the angular momentum transport is caused not by the artificial viscosity but by the pressure gradients. Using simple test simulations of shear flows, we conclude that the pressure gradient-based viscosity can be divided into two components: one due to the noisiness of SPH and the other to ram pressure. The former is problematic even with very high resolution because increasing resolution does not reduce the noisiness. On the other hand, the ram pressure effect appears only when a cold gas disc or sheet does not contain enough particles. In such a case, holes form in the disc or sheet, and then ram pressure from intra-hole hot gas, causes significant deceleration. In simulations of galactic disc formation, star formation usually decreases the number of cold gas particles, and hole formation leads to the fragmentation of the disc. This fragmentation not only induces further angular momentum transport, but also affects star formation in the disc. To circumvent these problem, we modify the SPH algorithm, decoupling the cold from the hot gas phases, i.e. inhibiting the hydrodynamic interaction between cold and hot particles. This, a crude modelling of a multi-phase fluid in SPH cosmological simulations, leads to the formation of smooth extended cold gas discs and to better numerical convergence. The decoupling is applicable in so far as the selfgravitating gas disc with negligible external pressure is a good approximation for a cold gas disc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method

This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical Cdm Cosmogony: Half Way There?

We present a smoothed particle hydrodynamic (SPH) simulation that reproduces a galaxy that is a moderate facsimile of those observed. The primary failing point of previous simulations of disk formation, namely excessive transport of angular momentum from gas to dark matter, is ameliorated by the inclusion of a supernova feedback algorithm that allows energy to persist in the model ISM for a per...

متن کامل

Cooling flows within galactic haloes: the kinematics and properties of infalling multi-phase gas

We study the formation of disks via the cooling flow of gas within galactic haloes using smoothed particle hydrodynamics simulations. These simulations resolve mass scales of a few thousand solar masses in the gas component for the first time. Thermal instabilities result in the formation of numerous warm clouds that are pressure confined by the hot ambient halo gas. The clouds fall slowly onto...

متن کامل

High Resolution Simulation of Galaxy Formation with Feedback

We present results from a Smoothed Particle Hydrodynamic (SPH) simulation of galaxy formation that exceeds the minimum resolution requirement suggested by Steinmetz & Muller (1993) of 3 × 10 SPH particles per galaxy. Using the multiple mass technique an effective resolution of a little over one billion particles is attained within a 48 Mpc cube. We find that even with an SPH mass resolution of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003